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Abstract— During the past decade, compressed sensing (CS) 

has proven to be extremely useful for sparse signal 
reconstruction. Here the method of CS is applied to fast mass 
distribution determination based on cold atom gravity 
gradiometer measurements. Specifically we consider an array of 
M gradiometers placed around a 2D target area in order to 
determine the interior mass distribution in cases where the set of 
(M) sensor measurements under samples the distribution. This 
was done by assuming that the system’s sparsity comes from the 
mass distributions only having K non-zero masses, which led to a 
non-orthogonal basis dictionary. This lack of orthogonality 
caused interesting behaviors, including weakened noise 
performance, and breaking of the typical CS motivated 
logarithmic scaling of required M values for larger K values.  
However, for low K values M scaled as expected. Modifications to 
the gravity sensor model to promote orthogonality and test its 
impact on signal recovery postponed the onset of anomalous 
scaling; suggesting that lack of orthogonality is the primary 
cause. While CS works for this sparse, but intrinsically ill-posed 
problem, this sensor system displayed increased noise sensitivity 
and a smaller upper bound on the size of recoverable K sets. 
However, while these limitations decrease CS performance, 
significant improvements over traditional sensing approaches are 
still possible. 
 

Index Terms—Atom Optics, Compressed Sensing, Signal 
Reconstruction, Sparse Representation 
 

I. INTRODUCTION 
ince its introduction, the framework of CS (Compressed 
Sensing) has proven to be powerful in a wide range of 

applications. These have included a single pixel camera [1], 
MRI reconstruction [2], ADC design [3], biology [4] and 
geology [5]. In this work we will investigate how CS can be 
applied to a new form of non-invasive inspection, a gravity 
gradiometer portal based on modern cold atom interferometry 
[21]. Though this work is primarily focused on the specific 
gravimetric application, it is easily extended to other response 
limited inverse problems.  

 
Since CS is based on the exploitation of signal sparsity,  the 

problem of mass distribution determination (‘gravity 
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tomography’) is a natural fit because many targets of interest 
will exhibit sparse deviations from expected background 
density patterns. For example the presence and localization of 
a block of dense material inside a crate is distinguished by 
relatively few extra variables from the background source of 
an empty crate. However, this is a non-traditional application 
for CS, as our sensor signal is not sparse in any orthogonal 
transform basis, but rather the system is sparse in the sources 
acted on by the gravity kernel. This feature poses several new 
challenges and interesting results emerge because gravity 
intrinsically lacks uniqueness, because different mass 
distributions can generate the same external gravitational field. 

This paper will begin with a brief description of the signal 
model used for the gravity sensors. We will then outline the 
basic features of CS, with a focus on how they are 
implemented in this case. Finally, the impact of our problem’s 
lack of sparsity in an orthogonal sense will be discussed, and 
its limitations considered. 

A. Sensor Design 
The sensors themselves are best understood by analyzing 

them as a series of steps, based on a semi-classical model. To 
begin with, a cloud of atoms is cooled and confined inside a 
MOT (Magneto-Optical Trap) [14-16]. Then the upper and 
lower confinement beams are detuned slightly, launching the 
cloud vertically in a fountain. As the cloud travels upwards it 
is hit with paired counter-propagating pulsed lasers driving the 
Raman effect, which splits the atomic wavepacket spatially 
into 2 parts, with correlated internal quantum numbers and 
momentum, that follow slightly different trajectories. At the 
peak of their trajectory the atoms are hit with another Raman 
pulse, which redirects the two wavepacket components 
towards each other. Lastly a third pulse completes the 

wavepacket reassembly. This process is shown in Fig. 1. [17-
19]. 

At the position where the atomic wavepacket re-combines 
the overall phase shift is measured via fluorescence. This 
entire process is effectively a measure of the difference in 
gravity seen along the two different trajectories. To reduce the 
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Fig. 1.  Time-height plot of the atom cloud as it undergoes each Raman 
pulse. Momentum transfer from each Raman pulse is noted. 
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impact of vibrational noise, the steps described above are done 
using two vertically seperated MOTs, whence the system 
operates as a gradiometer [20]. When this is all worked out, 
we are left with a linear relationship between the gravity 
gradient in the  vertical direction, and the relative phase 
differences Δϕ between atoms in the two vertically separated 
atomic clouds at the three times and positions where Raman 
pulses occured [20].  

 
!g ∝ ∆φ! t! − 2∆φ! t! + T + ∆φ! t! + 2T  (1) 
In a field with constant gravitational acceleration, the atoms in 
each cloud will experience the same effect from gravity, so 
their phases will all be equal. From (1) it follows that the 
gradient is zero, the expected result. 

B. Portal Configuration 
The general concept for the gravity portal is to augment 

current security radiation checkpoints, by identifying possibly 
shielded, anomalous masses in host vehicles passing through 
the gate [21]. This is an ill posed system, as there will be a 
finite number of sensors around the outside of the gate, 
attempting to determine the mass distribution inside. 
Furthermore, as already pointed out, the system is intrinsically 
ill-posed because different spherically symmetric mass 
distributions with the same total mass give identical external 
sensor readings. 

For the purposes of this work, in order to simplify our 
computations, we will consider a 2D analog to the full portal 
sensor. Additionally we will limit the number of allowed mass 
locations, to the vertices of a grid. This is can be visualized as 

below. 
Here the interior points show potential mass locations, and 

the exterior rectangle shows potential sensor locations. The 
sparsity condition for this setup comes from the assumption 
that only a few of the interior positions have nonzero masses 
at their location. This is an idealization of a car or shipping 
crate interior being predominately empty space, with a few 
added masses of interest.  

An example of the resulting boundary gravity signals due to 
two distinct point masses is shown in Fig.3.  It can be seen that 
small changes in mass positions will not result in large 
changes in the signal for certain areas of the portal. While 
which specific mass distributions are present, and the desired 
resolution of the gate are important factors in interpreting this 
fact, it is generally a problem that stems from gravity sensing, 
and cannot be avoided entirely. 

C. Compressed Sensing 

Mathematically, compressed sensing solves the equation Y = 
ΦS, where Y is the measurement, S is the signal, and Φ is the 
recovery matrix. CS addresses the situation where Y is under 
sampled, meaning we have fewer samples than the   Shannon-
Nyquist requirement for full, general source recovery. For 
convention, let M (length of y) be the number of 
measurements taken, and N (the length of S) be the number of 
entries in the desired signal. Attempting to solve this system 
when M<<N is then ill-posed. There is a large suite of tools 
for dealing with this problem by exploiting extra knowledge 
that might be available about S; CS exploits the knowledge 
that the signal S is ‘sparse’. Here sparsity means that S has 
only K non-zero elements [8]. For this application this means 
there are only K non-zero point masses inside the gate. 

 So what exactly does knowledge of this sparsity enable? 
Consider again the system Y= ΦS, but this time for a sparse 
vector S. Now, with Y being Mx1, Φ being MxN, and S being 
Nx1.This can be visualized as matrices, shown in Fig.4.  

The fact that S is K sparse means it only has K non-zero 

elements, so only K columns of Φ remain relevant after matrix 
multiplication. Which columns remain important depends on 
the positions of the nonzero entries. This selection process can 
be visualized using the same matrix shown in Fig. 5. 

This effectively recasts the recovery problem where Φ* is 
now KxN, and S* is Kx1. This new formulation is only an 
improvement if columns of the Φ* matrix are orthogonal. So 
in order for the sparsity to prove useful, this must be true. This 

 
Fig. 2.   Two dimensional security gate layout. Here red indices indicate 
potential mass locations, and the blue ring indicates potential sensor 
locations. 
 

 
 
Fig. 3.   Example signals caused by two (blue and red) point masses in the 
target region on the sensor ring. The total signal shown in purple is the 
summation of both of the individual elements,. 
 

 
Fig. 4.   Matrix visualization of the general CS problem setup. Dimensions 
are reflected in the relative shape of each matrix. 
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property of Φ is known as the RIP (Restricted Isometry 
Property) - the requirement that each MxK sized sub-matrix of 
Φ be full rank [9]. 

In general it has been shown that verification of the RIP is 
NP-hard [10]. However, if Φ is a random Gaussian matrix (or 
other sub Gaussian distribution) then to very high probability, 
Φ satisfies the RIP  [8]. This is subject to a restriction on the 
number of measurements taken (M) shown in (2). 

 
! = ![  !  !"#   !

!
     ]           (2) 

 
This is a very exciting result, as it shows that in principle 
sparse signals with very large N can be recovered readily by 
far fewer samples (M), which is exactly the desired behavior. 

D. Recovery Algorithms 
Now that we have the correct constraints to ensure that the 
problem properly utilizes the sparsity of S, we must find an 
algorithm suitable for reconstruction. It turns out that the best 
recovery technique is based on the minimization of the L0 
norm [8]. The L0 norm is an extensions of the LP norm for the 
case where p=0, and functionally it counts the number of 
nonzero elements in a vector. For example the L0 norm of S is 
K. With this knowledge, we might set out to solve the 
optimization problem, denoted by 
 
!∗ =   !"# !

!  
            !.!.            ! = Φ! (3) 

 
However this algorithm is known to be NP-hard [12] for the 
same reason as RIP checking is NP-hard. This would seem to 
be a serious road-block.  However if we relax the 
minimization problem to an L1 minimization, the results will 
be the same for most situations [8]. This means recovery can 
be achieved using the L1 relaxation of (3), which thankfully is 
computationally tractable.  
 
!∗ =   !"# !

!
            !.!.            ! = Φ! (4) 

 
Up until this point we have been assuming that the signal S 

is directly sparse, this is not generally true for all applications 
(though it is for some). A much larger class of problems have 
signals X that are sparse in some transformed basis ΨX. An 
example would be a signal consisting of K summed sinusoids, 
which is sparse under a discrete cosine transform. Expressed 
in matrix form this is the modified statement (5) that: 
 
! = !"      Therefore                ! = Φ!"           (5) 
 
This statement, while it does change the problem, can be 
viewed as a simple modification of the recovery matrix 
Φ∗ = Φ!. So the question now is whether Φ∗ preserves all 
the desired properties of Φ. This is only guaranteed to be true 
for ! matrices corresponding to an orthogonal basis [8]. 
While this is a very useful result, here we wish to apply CS to 
a system (gravity) that does not have this orthogonality 
property. 

II. IMPLEMENTATION MODEL 
The setup for this problem is proposed as a general technique 
for applying CS to problems sparse in non-orthogonal frames. 
To highlight this, each component of the problem   (! =
Φ!") will be discussed individually. The connections 
between the mathematical formulation and physical meaning 
will then be clear. 

A. !, Sparse Basis Generation 
Considering that X must be sparse, we take values in X to 
represent both the locations and size of masses in the gate.  
This means that ! maps the mass distribution into the sensed 
quantities. Stated differently, the  ! matrix characterizes (for a 
fixed sensor array) the set of all possible responses to mass 
source choices. 

Thinking about the problem in this light ! can be generated 
directly by calculating the response of the system to each 
potential stimulus. In this case we modeled the expected 
response for each of the sensors located along the outer ring of 
the gate, for each of the N interior mass locations. This means 
that a column of ! is the response of each sensor to a single 
mass at a particular location, and a row of ! is the response of 
a particular sensor, to a single mass at each of the potential 
locations. The sensor response for two particular mass 
locations, and the superposition of their gravity signals, is 
shown above in Fig.3. From equation (5) we see we have 
some flexibility with the dimensions of  !, so let it be PxN. 
For our application P is the total number of potential sensor 
locations along the sensing ring, but in general P can be 
thought of as the total number of potential ways the signal can 
be sampled.  This is shown graphically in Fig.7 

This concept of directly calculating the response to each 
potential stimulus is not unique to non-orthogonal dictionaries. 
For instance, consider a signal that is sparse in the Fourier 
domain, what would this method dictate ! to be? It would be 
the signal magnitude at each time we are considering, for each 
of the possible frequencies. If phase information is not 
considered, then by generating ! you would simply be 
constructing a DCT matrix. This provides an intuitive 

 
Fig. 5.   Color code shows which elements of Φ are selected. 
 

 
Fig. 6.   The matrix representation of the recast problem. The MxK matrix 
here is Φ*. RIP requires that this matrix is well posed. 
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interpretation for what a basis would be for a generalized CS 
application. This matrix is known as the dictionary in which 
the signal is sparse, and the system’s response to each 
potential stimulus is known as an element in the dictionary. 

B. Φ Sensing/Collection Matrix 
Now we need to construct a Φ matrix that will both properly 
reflect the physical limitations of the system, and maintain the 
RIP. For the portal application, one consideration was the fact 
that we are limited to a chosen number of sensors. For a given 
limit of L sensors, and an implementation based on random 1-
0 matrices, this means each row of Φ will have L entries of 
value 1, while the rest are 0. This is true for each of the M 
rows. For this work, L is approximately 1% of the P potential 
locations, amounting to using 11 sensors for each M 
measurement. 

Physically what this means is that each ‘measurement’ takes 
the signal seen by L locations, randomly chosen around the 
sensor ring, and sums them. This is done M times, where each 
measure uses a different set of L. This shows how extra 
information is introduced into the system with CS. Though we 
only have M values coming out of the measurement cycle, 
each of these values in some way carries information for L 
locations. The Φ matrix contains the information on which 
sensor where used for each of the M measurements, and is 
used in reconstruction. Again, it is useful to keep in mind the 
representation of the Φ matrix shown in Fig.7.  

When these two matrices are multiplied together it will give 
us the desired Φ*, as defined above. This is best thought of as 
a modified dictionary, based on the sensors that Φ selects from 
the full dictionary  !. For orthogonal ! dictionaries 
reconstruction is possible using (4) subject to the limitations 
given in (2); however this is not guaranteed for the non-
orthogonal ! used in this application.  

III. RECOVERY ALGORITHM IMPLEMENTATION 
Now that we have defined how to generate each component 

of the matrices in (5), we must have a technique to solve for 
X. There are many different algorithms currently used for 
recovery via L1 minimization. The two general classes of 
interest are greedy algorithms and linear programming. 
Neither of these methods is perfect, as each has pros and cons, 
and they are fundamentally limited by the RIP of the system. 

A. !"##$%  !"#$%&'ℎ!" 
The two most common forms of greedy algorithms used in 

CS recovery are BP (Basis Pursuit) [22] and OMP 
(Orthogonal Matching Pursuit) [23]. These are iterative fitting 
algorithms, where each iteration selects the single basis that 
minimizes the residual as much as possible. Said another way, 
these algorithms pick the best choice at each iteration, but do 
not find the globally best fit unless the two coincide.  

These techniques are well suited for most situations with 
orthogonal dictionaries, as orthogonality ensures that each 
element is sufficiently different so that the locally correct 
choice is also the global choice [23].  

However, for our application these algorithms perform very 
poorly for anything more than K=1. In the case shown in Fig.3 
instead of returning the 2 separated masses, greedy algorithms 
recover a single larger mass between the two actual mass 
locations. Any two elements in this dictionary look a lot like 
another single element, because there are linearly dependent 
elements. This linear dependence is a mathematical 
manifestation of the lack of uniqueness in gravity signals. 

B. !"#$%&  !"#$"%&&'($ 
Because the L1 norm is simply the summation of every 
element of a vector, the minimization in (4) can be cast as a 
linear optimization problem. This enables solutions via an 
entire suite of algorithms. The performance of each was not 
specifically analyzed, but instead the stock Mathematica 
Linear Programming function was used. This package uses a 
blend of ‘Revised Simplex’ and ‘Interior Point’. These 
algorithms search for the optimal X to minimize the global 
error in the reconstruction. For some orthogonal systems these 
algorithms are interchangeable with greedy algorithms, but for 
our purposes linear programming was the best option. 

IV. RESULTS 
The investigation of CS performance for this application 

took us down some unexpected lines of reasoning. To help 
facilitate overall understanding, different classes of results will 
be discussed individually, and then connected by shared 
behavior. The metric used for fit quality is the percentage of 
the recovered X values that are in the correct indices. 
Physically this corresponds to the percentage of the total mass 
placed in the correct locations. 

A. !"#$%&'(  !"#$"%$&' 
In order for CS to give an operational advantage, it must allow 
for reconstruction from a reduced (sub-Nyquist) number of 
measurements. This of course is also dependent on the degree 
of sparsity of the information, where the expected relationship 
is given by (2). Fig.8 illustrates how the recovery quality for 
the system approaches perfect recovery as a function of M. 
 
 
 
 
 

 
Fig. 7.   Visualization for the physical interpretation for both Φ and !. The P 
dimension noted here is the total number of potential sensor placements 
along the ring 
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As one can see there is a nice trend between sample count (M) 
and fit quality, which approaches perfect recovery as more 
samples are taken. Confirmation that the number of required 
measurements scales as (2) is shown by the number of 
measurements required for 80% reconstruction quality, for 
different K values in Fig.9. 

This was implemented using 50 randomly generated X 
vectors, taking the average of the reconstruction quality for 
each, then increasing M until 80% average quality was 
achieved. The decision to not plot K greater than 21 in Fig.9 is 
not arbitrary, as the expected scaling breaks at that point. This 
asymptote at M=60 represents a physical limit of the system, 
as for M larger than this, the algorithm begins to fail. This is 
very interesting because it is not predicted in classical CS, so 
intuitively it might be a product of the redundancy in the 
dictionary. That being said we see a nice agreement with the 
predicted scaling until the algorithm breaks. 

This is an important result, as it shows that the degeneracies 
of the dictionary will limit performance of CS, but only for 
larger sparsity values. Therefore as long as one knows the 
limits placed on K for their system, in theory you can 
determine whether CS is a viable option or not. The 
degeneracies bound the maximal values of M, which in turn 
bounds the size of K values. 

B. !  !"#$"%$&' 
This limitation warrants closer examination. For constant 
sparsity levels, the fit quality was investigated as a function of 
M. If this was an orthogonal system, increasing M past that 
value dictated by (2) would not give any better, or worse of a 
fit; it would simply converge to perfect recovery. 

However we see a falloff in fit quality for high M values. 
This explains why for larger M levels the algorithm did not 
reach 80%, because the fit quality decreases for higher M. In 
addition to this fall off, the algorithm begins to fail past M=70. 
This was not expected, as there is no immediate way to see 
why introducing more data would give a worse fit. This is 
slightly reminiscent of over-fitting data. It would seem that 
qualitatively, we are reading too much into each measurement. 

C. Noise Behavior 
With this idea for why the algorithm fails, the noise 

performance was analyzed to see if any further clues could be 
found. Evidence for over-fitting comes when the scaling 
shown in Fig.8 is re-calculated with 2 levels of additive 
Gaussian noise. 

In Fig.11 we see that when noise is added, the M scaling 
roll-over begins at lower sparsity, and the systems 
performance is limited even more. This is important to 
recognize as it means that this extension of CS cannot be 

 Fig.8.   Convergence of reconstruction quality for low K sparsity levels. 
Here the decision for when to clip M is arbitrary. 
 

 
Fig. 9.   80% threshold, fitting to (2) showing that the required samples 
needed for reconstruction of various distributions scales as expected for low 
K values 
 

 
Fig. 10.   High K sparsity recovery quality as a function of M. While it would 
be expected to converge to 100% for large M, instead we see degraded 
performance past a certain M.  
 

 
 Fig. 11.   The impact of noise on signal recovery scaling for low sparsity 
levels. SNR defined by the power of the signal, and the variance of additive 
Gaussian noise. SNR is approximate, as specifics depend on the mass 
distribution used for each of the samples averaged over. 
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considered valid in general, as the source recovery is much 
more fragile in a dynamic noise environment. 

V. DICTIONARY REDUNDANCY EFFECTS 
At this point, while there is reason to believe that the 

unexpected behavior is due to the dictionaries redundancy, this 
has not been shown directly. By modifying the gravity kernel 
to be non-physical, yet less redundant, we can add evidence 
for this intuitive view. This was done by using a piecewise 
definition of gravity, allowing it to go as the inverse distance 
squared until it hits a certain threshold, then falling to zero. 
Here the degree of orthogonality is based on the distribution of 
each dictionary’s singular values. 

As can be seen, the recovery quality roll-over behavior seen 
previously for the unmodified (physical) kernel is gone for this 
range of M. Looking at the full range of M, by re-analyzing 
how large an M we can get, and fitting to (2) we see that this 

modified kernel does greatly improve fit quality.  
This is quite an improvement, taking the tolerable range of 

sparsity from 21 to 60, though the algorithm still begins to fail 
for M approximately equal to 90. These trends extend to other 
modified dictionaries. Thus the degree of redundancy seems to 
be related to the valid range of M the algorithm can handle.   

This also greatly improves noise performance, as seen in 
Fig.14. The modified system provides performance at 45dB 
similar to the unmodified system at 60dB. In fact, we are able 

to make meaningful reconstructions with only 6dB, something 
the unmodified dictionary was unable to do. This is further 
evidence that the degree of redundancy in the basis dictionary 
is the cause of the limitations on CS source recovery we 
discovered for the physical gravity sensor kernel. 

VI. CONCLUSION 
Though it is a non-traditional application, we have 

successfully applied CS techniques to the reconstruction of 
mass distributions from gravity gradiometer measurements. 
This shows that the next generation of gravity gradiometers 
can be constructed to take advantage of these techniques, 
despite the lack of orthogonality requirements traditionally 
associated with CS. This opens up the design space, and may 
allow for truly novel designs in the future. 

 
Additionally we have more precisely characterized the two 

primary limitations for applying CS to this type of non-
traditional problem. These amount to limits on recoverable 
source sparsity, and increased in noise sensitivity. By 
artificially varying the gravity kernel we gave evidence that 
the lack of orthogonality in this problem’s sparse dictionary is 
the primary source of the limitations. This implies that with 
proper modeling, new and interesting applications of CS can 
be explored, with potentially innovative results in unexpected 
fields. 
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